skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Igwilo, Chiamaka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning (ML) applications have become an integral part of our lives. ML applications extensively use floating-point computation and involve very large/small numbers; thus, maintaining the numerical stability of such complex computations remains an important challenge. Numerical bugs can lead to system crashes, incorrect output, and wasted computing resources. In this paper, we introduce a novel idea, namelysoft assertions (SA), to encode safety/error conditions for the places where numerical instability can occur. A soft assertion is an ML model automatically trained using the dataset obtained during unit testing of unstable functions. Given the values at the unstable function in an ML application, a soft assertion reports how to change these values in order to trigger the instability. We then use the output of soft assertions as signals to effectively mutate inputs to trigger numerical instability in ML applications. In the evaluation, we used the GRIST benchmark, a total of 79 programs, as well as 15 real-world ML applications from GitHub. We compared our tool with 5 state-of-the-art (SOTA) fuzzers. We found all the GRIST bugs and outperformed the baselines. We found 13 numerical bugs in real-world code, one of which had already been confirmed by the GitHub developers. While the baselines mostly found the bugs that report NaN and INF, our tool found numerical bugs with incorrect output. We showed one case where theTumor Detection Model, trained on Brain MRI images, should have predicted ”tumor”, but instead, it incorrectly predicted ”no tumor” due to the numerical bugs. Our replication package is located at https://figshare.com/s/6528d21ccd28bea94c32. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026